Stokes and Navier-Stokes equations under power law slip boundary condition: Numerical analysis
نویسندگان
چکیده
In this work, we study theoretically and numerically the equations of Stokes Navier-Stokes under power law slip boundary condition. We establish existence a unique solution by using monotone operators theory for whereas equations, construct means Galerkin's approximation combined with some compactness results. Next, formulate analyze finite element approximations associated to these problems. derive optimal sub-optimal priori error estimate both problems depending how monotonicity is used. Iterative schemes solving nonlinear are formulated convergence studied. Numerical experiments presented confirm theoretical findings.
منابع مشابه
Numerical methods for the Stokes and Navier-Stokes equations driven by threshold slip boundary conditions
In this article, we discuss the numerical solution of the Stokes and Navier-Stokes equations completed by nonlinear slip boundary conditions of friction type in two and three dimensions. To solve the Stokes system, we first reduce the related variational inequality into a saddle point-point problem for a well chosen augmented Lagrangian. To solve this saddle point problem we suggest an alternat...
متن کاملFinite Element Analysis for Stokes and Navier-stokes Equations Driven by Threshold Slip Boundary Conditions
This paper is devoted to the study of finite element approximations of variational inequalities with a special nonlinearity coming from boundary conditions. After re-writing the problems in the form of variational inequalities, a fixed point strategy is used to show existence of solutions. Next we prove that the finite element approximations for the Stokes and Navier Stokes equations converge r...
متن کاملImplementation of a free boundary condition to Navier- Stokes equations
Numerical prediction of flow physics involves the specification of boundary conditions to close the problem. Whether all or part of the boundary needs consideration depends on the nature of the investigated partial differential equations. Taking as an example, closure boundary conditions for Navier-Stokes equations at an incompressible limit take different forms because a time-dependent problem...
متن کاملTowards a Transparent Boundary Condition for Compressible Navier–stokes Equations
A new artificial boundary condition for 2D subsonic flows governed by the compressible Navier–Stokes equations is derived. It is based on the hyperbolic part of the equations, according to the way of propagation of the characteristic waves. A reference flow as well as a convection velocity are used to properly discretize the terms corresponding to the entering waves. Numerical tests on various ...
متن کاملVorticity layers of the 2D Navier-Stokes equations with a slip type boundary condition
We study the asymptotic behavior, at small viscosity ε, of the NavierStokes equations in a 2D curved domain. The Navier-Stokes equations are supplemented with the slip boundary condition, which is a special case of the Navier friction boundary condition where the friction coefficient is equal to two times the curvature on the boundary. We construct an artificial function, which is called a corr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & mathematics with applications
سال: 2022
ISSN: ['0898-1221', '1873-7668']
DOI: https://doi.org/10.1016/j.camwa.2022.10.016